3 research outputs found

    Person recognition based on deep gait: a survey.

    Get PDF
    Gait recognition, also known as walking pattern recognition, has expressed deep interest in the computer vision and biometrics community due to its potential to identify individuals from a distance. It has attracted increasing attention due to its potential applications and non-invasive nature. Since 2014, deep learning approaches have shown promising results in gait recognition by automatically extracting features. However, recognizing gait accurately is challenging due to the covariate factors, complexity and variability of environments, and human body representations. This paper provides a comprehensive overview of the advancements made in this field along with the challenges and limitations associated with deep learning methods. For that, it initially examines the various gait datasets used in the literature review and analyzes the performance of state-of-the-art techniques. After that, a taxonomy of deep learning methods is presented to characterize and organize the research landscape in this field. Furthermore, the taxonomy highlights the basic limitations of deep learning methods in the context of gait recognition. The paper is concluded by focusing on the present challenges and suggesting several research directions to improve the performance of gait recognition in the future

    HActivityNet: A Deep Convolutional Neural Network for Human Activity Recognition

    Get PDF
    Human Activity Recognition (HAR), a vast area of a computer vision research, has gained standings in recent years due to its applications in various fields. As human activity has diversification in action, interaction, and it embraces a large amount of data and powerful computational resources, it is very difficult to recognize human activities from an image. In order to solve the computational cost and vanishing gradient problem, in this work, we have proposed a revised simple convolutional neural network (CNN) model named Human Activity Recognition Network (HActivityNet) that is automatically extract and learn features and recognize activities in a rapid, precise and consistent manner. To solve the problem of imbalanced positive and negative data, we have created two datasets, one is HARDataset1 dataset which is created by extracted image frames from KTH dataset, and another one is HARDataset2 dataset prepared from activity video frames performed by us. The comprehensive experiment shows that our model performs better with respect to the present state of the art models. The proposed model attains an accuracy of 99.5% on HARDatase1 and almost 100% on HARDataset2 dataset. The proposed model also performed well on real data
    corecore